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A complete mathematical model is proposed for the process of filtration separa- 
tion of a suspension. The problem of collecting the sediment on a plane bar- 
rier in a regime of a specified pressure difference has been solved. 

I. Let us examine the process of separating a suspension into the filtrate and ~:he 
moist sediment by means of a filtration barrier. In the construction of the mathemat:.cal 
model of this process we will proceed from the following considerations: i) the filt~:ation 
resistance of the precipitate retards the process and makes it rather rather free of :.nertia, 
so that with considerable accuracy the pressure distribution within the suspension is hydro- 
static; 2) the precipitation of the particles in the suspension proceeds in the effective 
direction of the mass forces; 3) the stress-strain state of the precipitate is described 
by the equations from the mechanics of saturated porous media; 4) filtration through the 
compressed precipitate is subject to the generalized Darcy law. 

In actual practice, the filtration barrier is usually flat or cylindrical. In the 
former case, it is positioned horizontally, so that the filtration occurs under the action 
of the force of gravity and can be ascribed to a vertical pressure gradient. For purposes 
of intensifying the process, the pressure difference is increased either through vacm~ 
rarefaction at the outlet from the filtration stream, or by means of a piston coming out 
of the suspension. In the case of a cylindrical filtration barrier, it is centrifugal force 
that plays the fundamental role, and the angular rotational velocity w of the barrier is 
so great that the force of gravity can be neglected, in which connection the filtration 
flow is virtually plane-radial. 

Either case can be uniquely described in the cylindrical coordinate system (r, 8~ z). 
In the region D I occupied by the suspension we have [i] 

[c~ + (1--c)pla-- a p = O, (1) ax 

% a - - C - ~ x  - :  -c 1 - c  =0,  

: o c  4 a(x",~.) = o ' 
at Ox 

: a(1-c_._.~)+ a(x?o____A_) = o, 
at ax 

(2) 

(3) 

(4) 

where for the horizontal grid we have x ~ z, n = 0, a = g cos ~, while for the cylindrical 
grid we have x ~ r, n = I, a = w2r. The x axis is directed to coincide with the direction 
of the flow. 

In region D 2 occupied by the moist precipitate, in accordance with the theory of satura- 
ted porous media [2]: 

[(1 - -  m) Ps + rap] a - -  apax + :1 a (x ~dx '~'=) = o, ( 5 ) 

pa axaP K1 ( W - - m l - m  Ws)=O' (6) 
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Fig. i. Porosity m (i) and dimen- 
sionless permeability K (2) as func- 
tions of the dimensionless stress o. 

x" a m  O (x n "l~') _ O, ( 7 ) 
-~f + o-----7 

x- O(1--m) + O(x"W~) - o .  
at ax ( 8 ) 

In order to close system of equations (1)-(8) we have to specify the relationships 
f(c), m(o), and K(o). These are found experimentally (see Fig. i). The law governing the 
growth in the thickness of the precipitate layer h(t) is determined by the conditions of 
mass balance for the liquid and solid phases at the boundary of conjugacy between the regions 
D z and D 2, x = x0(t). Obviously, dx0/dt = -dh/dt. From the general conditions at surfaces 
of strong discontinuities [3] it follows directly that 

dh _ l V - - q  _ q s - - l V s  , x = x  o. (9)  
dt l - - c - - m  1 - - c - - m  

In specific problems Eqs. (1)-(9) are enhanced by the conditions at the inlet to the 
flow of the suspension and at the filtration barrier. In the construction of the solutions 
it is useful to take into consideration the independence from x of the total volumetric 
flow rate of the incompressible phases which follows out of (I), (2), and (7), and (8): 

Q (t) = xn(q q- qs) = x~ (IV q- ~ ). (10) 

We must a l s o  bea r  i n  mind t h a t  o (x0)  = 0 [2 ] .  

2. L e t  us  examine t h e  a s s u m p t i o n s  u s u a l l y  made in  c a l c u l a t i n g  t h e  p r e c i p i t a t e  c o l l e c -  
t i o n ,  and on the basis of (1)-(9) we will ascertain the conditions under which they are 

applicable. 

Equation (5) is not to be found in the literature, with which we are familiar, dealing 
with the filtration separation of suspensions; in the place of this equation use is made 
of the linear relationship between o and p, or it is assumed that K = K(p), m = m(p) (see, 
for example, [4, 5]). For flat barriers, with @gh << P0 - Pc, such an approach is completely 
valid, since in this case we can neglect the mass forces in (5), and then 

= (Po - -P) /Pa '  Po - -  p(xo,  t). (11) 

Conversely, in the case of centrifuging, because of (5), we have 

X 

a (x~)_ = p o -  n + ~ [ I(1 - m) o. + tool xctx, 
x, X Pa Pax, 

X o < X < R ,  R = X o + h .  
(iz) 

Simple estimates show that in real regimes (h ~ R, ~ e 10~/sec) the fundamental contribution 
to the right-hand portion of (12) is made by the second term. In this case 

o d o  _ o~ 2 

( os + (P - %~ m SPa (2  - -  Xg). 
0 

1432 



Thus, in the case of centrifuging we cannot use formula (ii), as is done, for example, in 

[4]. 

The solution of these problems is substantially simplified, ~f we assume the function 
xnW to be independent of x. In this connection, of interest is the bilateral estima~;e of 
its change in the region D2(x 0 ~ x ~ xl). We will denote W0 = W(x0, t), W i = W(xz, ~), 
X = (xznwl)/(x0nW0). It is clear from physical considerations that 3m/St < 0, so that in 
the light of (7), xnW increases monotonically with a rise in x, minxnW = x0nWo, maxxnW = 
xlnw1, and, consequently, X > i. 

We can obtain the upper bound of I in two ways. The first of these is based on the 
fact that the filtration rate :is positive when x = x0: We - W0Sm0/(-m0 + i) > 0. In view 
of (I0), when WS(xl) = 0, we have W0 s = (xl/xo)nW1 - W 0, which means that (i - m0)W -- 
m0[(xl/x0)nwl - W 0] > 0, i.e., I < (i/m0). 

In the second case, we make use of the physically obvious inequality (dh/dt) > () and 
Eqs. (i), (2), (9), and (i0). On the basis of (9) and (I0), 

= Q(/) < q@q.-------..~s l 
X~Wo q ~=x, 

The r a t i o  q s / q  i s  f ound  as  a r e s u l t  o f  t h e  e l i m i n a t i o n  o f  ( 3 p / S x )  f rom (1 )  and ( 2 ) :  

qs  =__f___c + ~ ( 1 - - c )  ( p s - - p ) a .  (13)  
q 1--c 

Thus ,  t h e  s o u g h t  e s t i m a t e s  a r e  o f  t h e  form 

1 
1 <  ;~ .< ( 1 - -  me); 1 < ~ , <  -~--~oWc~(1--co) 

Co == c ~Xo, t), qo = q  (Xo, t). 

(Ps -- 9) a 

[qo 

Consequently, the assumption to the effect that xnW is independent of x has beer~ vali- 
dated for values of m 0 = m(x0t), close to unity (fibrous suspensions), as well as with a 
small volumetric concentration of particles in the suspension. Here, accurate to EQ, it 
is natural to assume that xnW(x, t) = Q(t), with the small parameter g denoting c o or I - 
m 0. We will stress that in this approximation the difference W 0 - q0 which figures Jn (9) 
must be expressed with an accuracy higher than gQ, since otherwise the ratio (W0 - qc)/ 
(i - c o - m0), and together with it, Eq. (9) for the increase in sedimentation will r rovide 
no information. 

3. Let us examine the collection of the precipitate on a plane horizontal barrier 
when W(x, t) = Q(t) in the regime of the following specified pressure difference: 

p ( ~ ,  t ) =  Po, p(x~, t )=p~ .  (14) 

The filtration equation (6) can then be written approxi- Let h(0) = 0, pgh(t) << (P0 -Pa). 
mately in the following form: 

O. (t) ~-- - -  KoR (~) Op 
Ox ' (i5) 

where  K(a)  = K(o) /K0 i s  t h e  d i m e n s i o n l e s s  p e r m e a b i l i t y .  Having i n t e g r a t e d  (15)  o v e r  t h e  
t h i c k n e s s  o f  t h e  p r e c i p i t a t e ,  w i t h  c o n s i d e r a t i o n  o f  ( 1 1 ) ,  we f i n d  

xl -~X (Pa-P*)/Pa-- 
Q(t)h(t)  = - -  j K(~) dx= PaKo I K(tr)d~ = A. (16)  

xe 0" 

Now, from (15) and (16) we have 

so that consequently: 

paKO 
. . . . .  Q(t )  , , 4  . . . . . . .  

x, ~ . v  (po-m)/pa _ hB 

x~ ~ A (17) 
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Equations (16) and (17) show that in the approximation (W = Q) with which we are dealing 
here, when P0 - Pl = const, the product Qh and the average porosity <m> for the porosity 
of the precipitate all remain constant (i.e., they are conserved) in the process of suspen- 
sion separation and they are all determined only by the pressure difference and the material 
functions K(o) and m(• 

Before we make use of Eq. (9) to find h(t), with sufficient accuracy we will express 
(W0 - q0) in terms of Q(t), h(t), and Co. From (i0) and (13) we find 

qo = (1 --co)Q-- W (Co), ~(c) = #(1--c)2(~ - -p )a  
f~) 

Having integrated (7) over the thickness of the precipitate, we have 

Since 

~ Om dx 
Ot + O. ( t ) - -  Wo = O. 

Xo 

~ d ~ dxo Om dx ~ -- mdx + m o - -  

.I Ot dt at 
XO XO 

so that with consideration of (7) 

dh 
~vo = Q (t) + ( < m > -- .@ at " 

Thus: 

W o -  qo ~ coQ (t) -+- cp (co) -]- ( < m > --  too) d_h_ 
dt 

and on the basis of (9) and (16) we have 

(1 - -  C o - -  < m > ) ca = coA +~(Co). (18) 
dt h 

Let us note that when ~(c 0) < 0 (the force of gravity is directed against the flow) the 
right-hand side of (18) may reduce to zero with the passage of time, and the collection 
of the precipitate then becomes impossible. If the quantity c o is independent of time, then 
as a result of the integration of (18) we obtain 

t =  1 - - c ~  l.h c~ ln ( l  + q~(co)h)]. 
(co) q~ (co) CoA 

Since 1 +~(c0)h/(c0A) > 0, with~(c 0) < 0 the following inequality is valid: 

c~ 
h (t )  < - -  

l~(c0)l 
In the particular case ~ (c o ) = 0 (the suspension exhibits either f = = or Ps = P) the solu- 
tion of (18) has the form 

h = 1 /  2c8A t. 
V 1 - - c  o - -  < t n >  

When m(o) = m 0 = const, K(o) = K 0 = const (<m> = m0, A = paK0) it changes into the one familiar 
from [6, 7]. 

Strictly speaking, concentration c(x 0) at the free boundary of the precipitate is indepen- 
dent of time only for suspensions. In the remaining cases, as a consequence of the precipita- 
tion of particles within the suspension, it is variable and determined by Eqs. (1)-(4) and 
the function Q(t). From (i0) and (13) we find that q = (i - c)Q -~(c). Then, in the light 
of (4) 

Oc 0 
at + -~x (cO. + ,~ (c)) = o, x,  (t) < x <~ Xo (t). 
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Fig. 2. Volumetric concentration c and precipi- 

tate thickness h as functions of time t: i) 
h(t), c = 0.31"10 -2 , a = 0; 2) h(t), c = 0.31. 
10 -2 , a = ~/2; 3) h(t), c = 0.31"10 -2 , a = ~; 

4) h(t), c(t) = c, ~ = ~; 5) c(t), a = v. h, 
m; t, sec. 

In actual fact, the specified pressure p(x,) = P0 is applied to the plane x = x...(t). The 
transfer of this value to the boundary of the precipitate x = x0(t) [condition ~14)] is 
justified by the fact that in actual practice pg(x 0 - x,) ~ P0- 

When x = x... the true velocities of the particles in the liquid and solid phases coin- 
cide with dx,/dt: q/(l - c) = qs/C = i,, and therefore q = qs = Q(t) = i,. 

Let us introduce into our consideration the reckoning system (~, t), moving toward 
the filtration barrier at the velocity Q(t): ~ = x - x...(t). In these new variables we have 
the following problem for the determination of c(~, t)"in DI: 

oc. + o~ o c _ o, c (~, o) = ~ (~), o <~ ~ <~ xo - -  x .  (t). 
at Oc at 

From a m a t h e m a t i c a l  s t a n d p o i n t  t h i s  i s  e n t i r e l y  a n a l o g o u s  t o  t h e  p r o b l e m  o f  t h e  g r a v i t a -  
t i o n a l  s e p a r a t i o n  o f  w a t e r  and p e t r o l e u m ,  which  has  been  so  t h o r o u g h l y  s t u d i e d  in  t he  t h e o r y  
o f  t w o - p h a s e  f i l t r a t i o n  [8 ,  9 ] .  I t s  s o l u t i o n  d e t e r m i n e s  t h e  v a l u e  o f  t h e  c o n c e n t r a t i o n  
co = c (x0  - x , ,  t )  a t  t h e  f r e e  b o u n d a r y  o f  t h e  p r e c i p i t a t e  in  t h e  g e n e r a l  c a s e .  

For  f i b r o u s  s u s p e n s i o n s  t h e  e f f e c t  o f  p r e c i p i t a t i o n  makes  i t s e l f  e v i d e n t  o n l y  in  t h e  
l i m i t e d  r e g i o n  o f  z e r o  c o n c e n t r a t i o n  v a l u e s ,  so  t h a t  i t  i s  t h e r e f o r e  p e r m i s s i b l e  t o  r e g a r d  
t h e  change  in  c ( ~ ,  t )  in  D z in  t h e  i n t e g r a l  s e n s e ,  making  t h e  a s s u m p t i o n  t h a t  

Co (t)---- c(xo z , ,  t)___ 1 ~~ 
- -  - -  c(x, t) dx. 

X 0 - -  X+ 

In this case the function c0(t) has the ratio of the volume Vs(t) of the solid particles 
to the overall volume V(t) of the suspension in D I is expressed as follows: 

co (t) = 

Xt 

Vs ( o ) - -  s ~ (1 - -  m) dx 

t 

V (0) - -  Sh  - -  S ~ Q (T) d'~ 
0 

Hence 

v (0) h - -  ( q (~) dr = 1 t(Vs (O)/S) - -  h (1 - -  < m > )]. 
S 

Differentiation of this relationship over time, with consideration of (16) and (18), leads 
to the equation 

dco = __ c,~ (Co) 
dt ~ (0)/S)--O-- <m>)h (19) 

Figure 2 shows the results from the calculations carried out with Eqs. (18) and (19) 
for a water suspension whose solid phase is made up of 30% fibrous (a 40 ~ Schopper-Riegler 
grinding ratio) and 70% powder (particle dimensions of 2-i0-s-5.10 -s m) cellulose, with 
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V(0) = i0 -s m 3, S = 0.2 m 2, c0(0) = 0.31"10 -2 , P0 - Pz = 2Pa, K0= I0-9 m2/(Pa'sec) �9 The 
functions K(o) and m(o), found experimentally (Fig. i), correspond to the constant values 
A = 3.62"10 -5 mZ/sec, B = 2.93"10 -5 m2/sec which figure in (16) and (17). 

The function f(c), based on experimental data, was approximated in the range of changes 
in the concentration, i.e., 2"10 -3 g c g 1.5"10 -2 , in the following form: 

f@) = 0,185.10-a. C3,375 ~g/mS'sec. 

The c a l c u l a t i o n  r e s u l t s  (F ig .  2) a r e  in good agreement  wi th  exper iment .  

NOTATION 

c, volumetric concentration of the particles in the suspension; Ps and p, true densities 
of the solid particles and of the liquid; p, pressure; Pa, atmosphereic pressure; g, gravita- 
tional acceleration; ~, angle of inclination for the force of gravity to the direction of 
the flow; w, angular velocity of the barrier; x, generalized coordinate; x 0 and xl, coordinates 
of the precipitate boundaries; x,, coordinate of the suspension boundary; q and qs, volumetric 
flow rates of the liquid and solid phases in the suspension, per unit area; W and W s, volu- 
metric flow rates of the liquid and solid phases in the_precipitate per unit area; Oxx, 
effective stress; K, filtration factor (permeability); K = K/K 0, dimensionless permeability; 
m, porosity of precipitate; h, thickness of precipitate; t, time; R, radius of cylindrical 
barrier; e, small parameter; V s, volume of solid particles in suspension; V, volume of sus- 
pension; S, area of filtration barrier. The subscripts 0 and 1 indicate the corresponding 
quantities have been taken at the boundary between the suspension and the precipitate and 
the filtration barrier. 
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